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ELEMENTARY SU(3) GROUP ELEMENT !?!

I Group elements can be written as polynomials in Lie algebra generators.

Why bother? Consider SU(2), the rotation matrix for 2-spinors,

eia(n̂·~σ) = I cos a+ i(n̂ · ~σ) sin a ,

so the generic SU(2) (SO(3)) group element multiplication is

eia(n̂·~σ)eib(m̂·~σ)

= I(cos a cos b−n̂·m̂ sin a sin b)+i(n̂ sin a cos b+m̂ sin b cos a−n̂×m̂ sin a sin b)·~σ

= I cos c+ i(k̂ · ~σ) sin c = eic(k̂·~σ).



Manifestly, cos c = cos a cos b−n̂·m̂ sin a sin b , the spherical law of cosines.

Given c, ;

eick̂·~σ = exp
(
i c
sin c(n̂ sin a cos b+ m̂ sin b cos a− n̂× m̂ sin a sin b) · ~σ

)
XComposition law of finite rotations —J W Gibbs, 1884.

t A student asks me: “Is there something like that for SU(3)?”

I lied: “Aw... an awful mess...”.

I Not so: The fundamental rep group element of SU(3) is a quadratic

in generators, quite compact and pretty.



Consider an arbitrary 3 × 3 traceless hermitian matrix H, so, e.g. an

arbitrary linear combination of Gell-Mann matrices.

I The Cayley–Hamilton theorem gives

H3 = I det (H) + 1
2 H tr

(
H2

)
,

and so det (H) = tr
(
H3

)
/3.

# an H2 term is absent in the polynomial expansion of H3 because of

tr (H) = 0.

; Since tr
(
H2

)
> 0 for any nonzero hermitian H, this bilinear trace

factor may be absorbed into the normalization of H, thereby setting the

scale of the group parameter space.

One may write the exponential of H as a matrix polynomial, quadratic in

H by C–H, with polynomial coefficients that depend on the displacement

from the group origin as a rotation angle θ.



The polynomial coefficients will also depend on invariants (traces, class

functions) of the matrix H, which can be expressed in terms of the eigen-

values of H. For such a normalized H, there is effectively only one

invariant: det (H).

This invariant may be encoded cyclometrically as yet another angle,

φ = 1
3

(
arccos

(
3
2

√
3 det (H)

)
− π

2

)
,

whose geometrical interpretation will clarify. Conversely,

det (H) = − 2
3
√

3
sin (3φ) .

The quadratic invariant was absorbed into θ, so tr
(
H2

)
= 2, while the

C–H thm expression collapses to H3 = H + I det (H), all consistent with

the Gell–Mann λ-matrices.

~ H diagonalizes to 2√
3

diag((sinφ, sin(φ + 2π/3), sin(φ − 2p/3)),

by virtue of Viète’s Z3

x3 − 3
4x+ 1

4 sin 3φ = (x− sinφ)
(
x− sin(φ+ 2π

3 )
) (
x− sin(φ− 2π

3 )
)
.



� � For any SU (3) group element generated by a traceless 3×3 hermitian
matrix H ,

exp (iθH) =

∑
k=0,1,2

[
H2 + 2√

3
H sin

(
φ+ 2πk

3

)
− I

3

(
1 + 2 cos

(
2
(
φ+ 2πk

3

)))]

×
exp

(
2√
3
iθ sin

(
φ+ 2πk

3

))
1− 2 cos

(
2
(
φ+ 2πk

3

)) ,

where we have set the scale for the θ parameter space by choosing the
normalization tr

(
H2

)
= 2 .

So expressed as a matrix polynomial, the group element depends on the
sole invariant det (H) in addition to the group rotation angle θ. Both
dependencies are in terms of elementary trigonometric functions when
det (H) is expressed as the angle φ, whose geometrical interpretation
follows immediately from the three eigenvalues of H exhibited above.

XCheck the character, the trace of the group element,

exp
(

2√
3
iθ sin (φ)

)
+ exp

(
2√
3
iθ sin

(
φ− 2π

3

))
+ exp

(
2√
3
iθ sin

(
φ+ 2π

3

))
.



	 These eigenvalues are the projections onto three mutually perpendicular

axes of a single point on a circle formed by the intersection of the 0 =

tr (H) eigenvalue plane with the 2 = tr
(
H2

)
eigenvalue 2-sphere. The

angle φ parameterizes that circle.

The eigenvalues are the projections onto a single axis of three points

equally spaced on a circle (Viète): Z3.



� Two special cases

On the one hand, the Rodrigues formula for SO (3) rotations about

an axis n̂, as generated by j = 1 spin matrices, is obtained for φ = 0 =

det (H),

T
T
T

�
�
�

exp (iθH)|φ=0 = I + iH sin θ +H2 (cos θ − 1) .

This is the Euler-Rodrigues result, upon identifying H = n̂ ·
−→
J , which

provides an explicit embedding SO (3) ⊂ SU (3).

In fact, this holds if H is any one of the first seven Gell-Mann λ-matrices,

or if H is a normalized linear combination of λ1−3, or of λ4−7.

(However, for generic linear combinations of λ1−7, det (H) will not nec-

essarily vanish.)



¶ On the other hand,

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


is the only one among Gell-Mann’s choices for the 3 × 3 representation

matrices for which φ 6= 0, and for which two eigenvalues are degenerate.

Clearly, det (λ8) = −2
3
√

3
, so φ = π/6. Moreover, λ2

8 = 2
3 I − 1√

3
λ8.

# Thus, directly from our formula,

exp (iθλ8) = 1
3

(
2I +

√
3λ8

)
e

1
3i
√

3θ + 1
3

(
I −
√

3λ8

)
e
−i 2√

3
θ

=


exp

(
iθ/
√

3
)

0 0

0 exp
(
iθ/
√

3
)

0

0 0 exp
(
−2iθ/

√
3
)
 ,

as required .



� This particular example followed from the formula by carefully taking

the limit as φ→ π/6 of the k = 0 and k = 1 terms in that general expres-

sion, as necessitated by the degeneracy of the corresponding eigenvalues

of λ8), combined with the limit of the k = 2 term:

lim
φ→π/6

[λ2
8 + 2√

3
λ8 sin

(
φ+ 2π

3

)
− 1

3 I
(
1 + 2 cos

(
2
(
φ+ 2π

3

)))]exp
(

2√
3
iθ sin

(
φ+2π

3

))
1−2 cos

(
2
(
φ+2π

3

)) 

= lim
φ→π/6

[λ2
8 + 2√

3
λ8 sin (φ)− 1

3 I (1 + 2 cos (2φ))
] exp

(
2√
3
iθ sinφ

)
1−2 cos(2φ)


=
(

1
3 I + 1

2
√

3
λ8

)
eiθ/
√

3.



# One readily verifies that the Laplace transform of the formula fur-

nishes the resolvent in the standard form as a matrix polynomial

(Curtright, van Kortryk) involving the adjugate over the determinant,∫ ∞
0

e−t exp (itsH) dt =
1

I − isH
,

#
1

I − isH
=

1

1 + s2 + is3 det (H)

((
1 + s2

)
I + isH − s2H2

)
.

; The Laplace transform can be inverted to yield the formula in terms

of the impulse response of the transfer function given by the prefactor in

the resolvent,

exp (iθH) =

(
H2 − iH

d

dθ
− I

(
1 +

d2

dθ2

)) ∑
k=0,1,2

exp
(

2√
3
iθ sin (φ+ 2πk/3)

)
1− 2 cos 2 (φ+ 2πk/3)

.
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